6,403 research outputs found

    Learn with SAT to Minimize B\"uchi Automata

    Full text link
    We describe a minimization procedure for nondeterministic B\"uchi automata (NBA). For an automaton A another automaton A_min with the minimal number of states is learned with the help of a SAT-solver. This is done by successively computing automata A' that approximate A in the sense that they accept a given finite set of positive examples and reject a given finite set of negative examples. In the course of the procedure these example sets are successively increased. Thus, our method can be seen as an instance of a generic learning algorithm based on a "minimally adequate teacher" in the sense of Angluin. We use a SAT solver to find an NBA for given sets of positive and negative examples. We use complementation via construction of deterministic parity automata to check candidates computed in this manner for equivalence with A. Failure of equivalence yields new positive or negative examples. Our method proved successful on complete samplings of small automata and of quite some examples of bigger automata. We successfully ran the minimization on over ten thousand automata with mostly up to ten states, including the complements of all possible automata with two states and alphabet size three and discuss results and runtimes; single examples had over 100 states.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    The impact of intermediary remuneration in differentiated insurance markets

    Get PDF
    This article deals with the impact of intermediaries on insurance market transparency and performance. In a market exhibiting product differentiation and coexistence of perfectly and imperfectly informed consumers, competition among insurers leads to non-existence of a pure-strategy market equilibrium. Consumers may become informed about product suitability by consulting an intermediary. We explicitly model two intermediary remuneration systems: commissions and fees. We find that social welfare under fees is first-best efficient but fees lead to lower expected profits of insurers and non-existence of a pure-strategy market equilibrium. Commissions, in contrast, cause 'overinformation' of consumers relative to minimal social cost, but yield a full-information equilibrium in pure strategies associated with higher expected profits of insurers. This might explain why intermediaries are generally compensated by insurers. --product differentiation,intermediation,insurance oligopoly

    On the strength of dependent products in the type theory of Martin-L\"of

    Full text link
    One may formulate the dependent product types of Martin-L\"of type theory either in terms of abstraction and application operators like those for the lambda-calculus; or in terms of introduction and elimination rules like those for the other constructors of type theory. It is known that the latter rules are at least as strong as the former: we show that they are in fact strictly stronger. We also show, in the presence of the identity types, that the elimination rule for dependent products--which is a "higher-order" inference rule in the sense of Schroeder-Heister--can be reformulated in a first-order manner. Finally, we consider the principle of function extensionality in type theory, which asserts that two elements of a dependent product type which are pointwise propositionally equal, are themselves propositionally equal. We demonstrate that the usual formulation of this principle fails to verify a number of very natural propositional equalities; and suggest an alternative formulation which rectifies this deficiency.Comment: 18 pages; v2: final journal versio

    The multivariate Piecing-Together approach revisited

    Get PDF
    The univariate Piecing-Together approach (PT) fits a univariate generalized Pareto distribution (GPD) to the upper tail of a given distribution function in a continuous manner. A multivariate extension was established by Aulbach et al. (2012a): The upper tail of a given copula C is cut off and replaced by a multivariate GPD-copula in a continuous manner, yielding a new copula called a PT-copula. Then each margin of this PT-copula is transformed by a given univariate distribution function. This provides a multivariate distribution function with prescribed margins, whose copula is a GPD-copula that coincides in its central part with C. In addition to Aulbach et al. (2012a), we achieve in the present paper an exact representation of the PT-copula's upper tail, giving further insight into the multivariate PT approach. A variant based on the empirical copula is also added. Furthermore our findings enable us to establish a functional PT version as well.Comment: 12 pages, 1 figure. To appear in the Journal of Multivariate Analysi
    corecore